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Abstract

We initiate studying the Remote Set Problem (RSP) on lattices, which given a lattice asks to
find a set of points containing a point which is far from the lattice. We show a polynomial-
time deterministic algorithm that on rank n lattice L outputs a set of points at least one of
which is

√
log n/n · ρ(L)-far from L, where ρ(L) stands for the covering radius of L (i.e., the

maximum possible distance of a point in space from L). As an application, we show that the
Covering Radius Problem with approximation factor

√
n/ log n lies in the complexity class NP,

improving a result of Guruswami, Micciancio and Regev by a factor of
√

log n (Computational
Complexity, 2005).

Our results apply to any `p norm for 2 ≤ p ≤ ∞ with the same approximation factors
(except a loss of

√
log log n for p = ∞). In addition, we show that the output of our algorithm

for RSP contains a point whose `2 distance from L is at least (log n/n)1/p · ρ(p)(L), where
ρ(p)(L) is the covering radius of Lmeasured with respect to the `p norm. The proof technique
involves a theorem on balancing vectors due to Banaszczyk (Random Struct. Alg., 1998) and
the ‘six standard deviations’ theorem of Spencer (Trans. AMS, 1985).

1 Introduction

An m-dimensional lattice of rank n is the set of all integer combinations of n linearly independent
vectors in Rm called a basis. Lattices were investigated since the late 18th century by mathemati-
cians, and during the last decades they have also attracted lots of attention from a computational
point of view. On one hand, a long line of research shows that many fundamental lattice problems
are hard and indicates that it is impossible to solve them in polynomial running time. On the other
hand, lattices were shown to be useful as an algorithmic tool as well as applicable in cryptography
(see, e.g., [28]). Interestingly, the use of lattices in constructions of cryptographic primitives enjoys
strong security relied on the worst-case hardness of certain lattice problems, as was first shown
by Ajtai [2]. Therefore, research on algorithms for lattice problems and on their hardness is highly
motivated.

There are many important computational problems associated with lattices. The two most
fundamental ones are the Shortest Vector Problem (SVP) and the Closest Vector Problem (CVP).
In the former, for a lattice given by an arbitrary basis we are supposed to find (the length of) a
shortest nonzero vector in the lattice. The problem CVP is an inhomogeneous variant of SVP, in
which given a lattice and some target point one has to find (the distance from) the closest lattice
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point. Another lattice problem of interest is the Covering Radius Problem (CRP) in which given a
lattice the goal is to find (a point in space which attains) the maximum possible distance from the
lattice. This distance is referred to as the covering radius of the lattice. In all problems, the distance
is measured relative to some fixed norm on Rm. Usually it is the Euclidean norm `2 (to which we
refer unless otherwise specified) but other `p norms for 1 ≤ p ≤ ∞ are of interest as well (see,
e.g., [32]). We note that all the mentioned problems have analogous intensively studied problems
in the context of linear codes.

The first polynomial-time approximation algorithm for SVP was presented by Lenstra, Lenstra
and Lovász (LLL) in 1982 and achieved an approximation factor of 2O(n), where n is the rank of
the lattice [23]. Using their algorithm, Babai came up with the nearest plane algorithm achieving
the same approximation factor for CVP [6]. A few years later, Schnorr obtained a slightly sub-
exponential approximation factor for SVP, namely 2O(n(log log n)2/ log n) [33], and this has since been
improved by a randomized algorithm of [3]. Kannan presented deterministic algorithms solving
SVP and CVP exactly requiring running time nO(n) [20], and this was improved to 2O(n) more than
two decades later by Micciancio and Voulgaris [29]. The algorithm of [29] was recently extended
to any `p norm (and other norms) by Dadush, Peikert and Vempala [12].

On the hardness side, it is known that CVP is NP-hard to approximate to within nc/ log log n [14]
for some constant c > 0 and that (under randomized reductions) it is NP-hard to approximate
SVP to within any constant [21]. Hardness of approximating SVP to within some nc/ log log n factor
is known to date only assuming some stronger (yet plausible) complexity assumptions [19, 26]
(see [13] for stronger results for the `∞ norm). In contrast to the hardness results, there is a line
of research showing limits on the hardness of lattice problems. For example, suitably defined gap
versions of both SVP and CVP are known to lie in coNP for approximation factor of

√
n [1] and

in coAM for approximation factor of
√

n/ log n [15]. Therefore, they are unlikely to be NP-hard
to approximate to within

√
n/ log n, as this would imply the collapse of the polynomial-time

hierarchy [11]. The results of [1] were extended by Peikert to SVP and CVP in the `p norm for
2 ≤ p ≤ ∞ with essentially the same approximation factors [31].

The study of the Covering Radius Problem on lattices (CRP) from a computational point of
view was initiated by Guruswami, Micciancio and Regev in [16]. Previously this problem was
used by Micciancio to get tighter connections between the average-case and worst-case complexity
of lattice problems [24]. It was shown in [16] that approximating CRP to within γ(n) can be done
in exponential time 2O(n) for any constant γ(n) > 1 and in polynomial time for some γ(n) =

2O(n log log n/ log n).1 In addition, they showed that CRP is in AM for γ(n) = 2, in coAM for γ(n) =√
n/ log n, and in NP ∩ coNP for γ(n) =

√
n. Peikert showed in [31] that CRP in the `p norm for

2 ≤ p ≤ ∞ lies in coNP for the same
√

n approximation factor (except a loss of
√

log n for p = ∞).
However, such an extension to `p norms is not known for NP and this was left as an open question
in [16]. On the hardness side, very little is known. The decisional gap version of CRP (of deciding
whether the covering radius is at most some given r) naturally lies in the complexity class Π2 and
is conjectured to be Π2-hard [24]. However, Π2-hardness is only known for CRP in the `p norm
for any sufficiently large value of p [18].

Among the results mentioned above regarding CRP, the one saying that CRP is in AM for

1To be precise, the algorithms of [16] were randomized since they used randomized algorithms of [4]. However, the
deterministic algorithm of [29] implies that the approximation obtained in [16] can be achieved deterministically.
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γ(n) = 2 is unique for this lattice problem. The proof of this fact is relatively simple, and follows
from the following AM protocol. Given a lattice L and a number r, the verifier sends to the prover
a uniformly chosen random point in space and the prover has to provide a lattice point whose
distance from the random point is at most r. Clearly, if the covering radius is at most r then
the prover can act in a way that the verifier accepts with probability 1. On the other hand, the
soundness is crucially based on an observation of [16] that random points in space are far from
the lattice with high probability. More precisely, a uniformly chosen random point is with constant
probability at least 1

2 · ρ(L)-far from a lattice L, where ρ(L) stands for the covering radius of L.
A natural question to ask is whether CRP with γ(n) = 2 (or with some other factor smaller than√

n) can be shown to be in NP. Observe that if the verifier could deterministically pick a point in
space which is quite far from the input lattice, then the protocol above could yield an NP verifier
for CRP. Moreover, it can be seen that a deterministic algorithm which outputs polynomially
many points at least one of which is quite far from the lattice could suffice for this purpose as
well. This challenge is the driving force of the current work, in which we study deterministic
polynomial-time algorithms which given a lattice find a set of points containing a point which is
far from the lattice.

1.1 Our Contribution

In this paper we initiate studying the Remote Set Problem (RSP) on lattices. This problem can be
viewed as a generalized search variant of the Covering Radius Problem studied in [24, 16, 18, 17]. In
RSP the input is a rank n lattice given by a basis generating it. The goal is to find a set S of points
in the span of B containing a point which is far from the lattice. This problem is analogous to a
problem suggested for study by Alon, Panigrahy and Yekhanin in the context of linear codes [5]
(see Section 1.3 for details).

Recall that the maximum possible distance of a point in space from a lattice L is called the
covering radius of L and is denoted by ρ(L). The quality of an algorithm for RSP depends on two
parameters (to be minimized):

1. the size d of the set S constructed by the algorithm, and

2. the remoteness parameter which is defined as the minimum γ ≥ 1 for which S contains a point
whose distance from L is at least 1

γ · ρ(L) for every input lattice L.

As was mentioned before, for every lattice L a uniformly chosen random point in space has
distance at least 1

2 · ρ(L) from L with a constant probability [16]. This implies that the efficient
algorithm which uniformly and randomly picks a point in space (without even looking at the
specific input) solves RSP with d = 1 and γ = 2 with a constant probability of success. Moreover,
an algorithm that independently and randomly picks d points and outputs all of them solves
RSP with parameters d and γ = 2 with failure probability which tends to 0 exponentially in d.
However, the problem seems much more challenging if we require the algorithm to be deterministic
(this is also the case for linear codes; see Section 1.3 and [5] for details).

To obtain a deterministic algorithm for RSP one can use an observation made in [7, 16] saying
that for every lattice L there exists a point in 1

2 · L whose distance from L is at least 1
2 · ρ(L). This

implies that the algorithm, which outputs all the linear combinations of the basis vectors with all
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coefficients in {0, 1
2}, deterministically solves RSP with γ = 2. However, the number of points

that this algorithm outputs is d = 2n, where n is the rank of the input lattice, and, in particular, its
running time is exponential in n.

In this paper we consider the task of finding an algorithm for RSP which is simultaneously
deterministic and of polynomial running time. First, we observe that the LLL algorithm [23] can
be used to deterministically and efficiently calculate a point whose distance from the lattice ap-
proximates the covering radius with an exponential factor.

Theorem 1.1. There exists a deterministic polynomial-time algorithm for RSP with d = 1 and γ(n) =

2O(n).

Our main result significantly improves the remoteness parameter γ achieved in Theorem 1.1
at the price of having d polynomial in the input size, as stated below.

Theorem 1.2. There exists a deterministic polynomial-time algorithm for RSP with γ(n) =
√

n/ log n.

Notice that the number d of points that the algorithm of Theorem 1.2 outputs is polynomial in the
input size, as d clearly cannot be higher than the running time.

As alluded to before, besides being a natural lattice problem, studying RSP is motivated by
research on the Covering Radius Problem (CRP). In the promise version of CRP with parameter
γ ≥ 1 the input consists of a lattice L and a number r, and the goal is to decide whether the
covering radius ρ(L) of L is at most r or larger than γ · r. This problem lies in the complexity class
Π2 (for any γ), since ρ(L(B)) ≤ r if and only if for all x in the span of L there exists y ∈ L such that
the distance between x and y is at most r. For small values of γ the problem is conjectured to be
Π2-hard [24], however it is known that for γ(n) =

√
n it lies in NP [16] (see also [27, Section 7]).

In order to prove that CRP with certain γ = γ(n) is in NP one should come up with an efficiently
verifiable witness for instances with ρ(L(B)) ≤ r which does not exist if ρ(L(B)) > γ · r. We claim
that a deterministic and efficient algorithm for RSP can be useful for this purpose. Indeed, such
an algorithm outputs a set S of points at least one of which is quite far from the lattice, hence in
order to verify that the covering radius is small it suffices to verify that the points in S are close to
the lattice. This can be easily done taking the witness which consists of the lattice points closest to
the points in S. We combine this idea with Theorem 1.2 and obtain the following theorem which
improves upon the

√
n factor obtained in [16].

Theorem 1.3. CRP with approximation factor
√

n/ log n is in NP.

Another motivation to study RSP comes from the connections between CRP and the Closest
Vector Problem (CVP). Known connections between these problems were found useful in several
results of [16] regarding the complexity of CRP, namely, the exponential-time approximation al-
gorithm for any γ > 1 and the proof systems implying that CRP with approximation factors

√
n

and
√

n/ log n are in coNP and coAM respectively. It turns out that algorithms for RSP imply re-
ductions from CRP to CVP. Specifically, we show that our algorithm for RSP from Theorem 1.2
implies a deterministic rank-preserving polynomial-time Cook reduction from CRP to CVP with√

n/ log n loss in the approximation factor (see Corollary 4.5). The only similar result we are
aware of is implied by a paper of Micciancio [25] and gives a

√
n loss in the approximation factor.2

2Strictly speaking, Micciancio shows in [25] a gap-preserving Cook reduction from the Shortest Independent Vectors
Problem (SIVP) to CVP which, combined with known relations between SIVP and CRP, implies a Cook reduction from
CRP to CVP with

√
n loss in the approximation factor.
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We also show that Karp reductions from CRP to CVP can be derived from algorithms for RSP. For
details see Section 4.2.

In the above discussion RSP and CRP were considered with respect to the Euclidean norm,
but it is natural to consider them with respect to any other `p norm for 1 ≤ p ≤ ∞. It is easy to
prove that our results can be adapted to arbitrary `p norm, since in Rm all `p norms are within√

m from the `2 one. However, this introduces a
√

m loss in the approximation factors (where
m is the dimension of the lattice). We actually show that this loss is not necessary answering
a question asked in [16]. We prove that Theorem 1.2 holds for any `p norm for 2 ≤ p < ∞.
Namely, for every 2 ≤ p < ∞, there exists a deterministic polynomial-time algorithm that given a
lattice whose covering radius with respect to the `p norm is r outputs a set of points guaranteed
to contain a point whose `p distance from the lattice is at least

√
log n/n · r. Interestingly, we

show that our algorithm can also be generalized to the `p norm in the following manner: given a
lattice whose covering radius with respect to the `p norm is r it outputs a set of points guaranteed
to contain a point whose `2 distance from the lattice is at least (log n/n)1/p · r. Our results are
similarly extended to the `∞ norm and imply a generalization of Theorem 1.3 to every `p norm for
2 ≤ p ≤ ∞.

1.2 Techniques

The algorithm for RSP which yields Theorem 1.2 is quite simple. At the heart of its analysis lies
a fact (which was mentioned before) saying that for every lattice L there exists a point in 1

2 · L
whose distance from L is close to its covering radius (see [7, 16] and Lemma 2.1). This suggests a
deterministic construction of all the 2n linear combinations of the basis vectors with all coefficients
in {0, 1

2}, since at least one of them is quite far from the lattice. In what follows we explain how
we significantly decrease the number of points that the algorithm outputs.

Let us start with the simple algorithm which given a lattice basis B = (b1, . . . , bn) outputs the
set S = { 1

2 · b1, . . . , 1
2 · bn}. We claim that at least one of the points in S is quite far from the lattice

L(B) generated by B. Indeed, it can be shown that if all the points in S are of distance at most r
from L(B) then every sum of a subset of S is of distance at most

√
n · r from it. However, there

exists a subset of S whose sum has distance from the lattice which is close to its covering radius.
This implies that the distance from the lattice of at least one of the points in S approximates the
covering radius to within a factor of

√
n.

Intuitively, the above algorithm achieves an approximation factor of
√

n since there exists a
point far from the lattice which can be written as a sum of at most n points in S. A possible
approach to improve the

√
n factor is to output a set S for which a point far from the lattice can

be written as a sum of fewer points in S. To do so, our algorithm arbitrarily partitions the n basis
vectors into n/ log n sets of size log n each denoted B1, . . . , Bn/ log n. The algorithm outputs the set
S of all points which form a linear combination of vectors that belong to only one of the Bi’s with
all coefficients in {0, 1

2}. Since the number of vectors in every Bi is logarithmic in n, it is possible
to construct these points in polynomial running time. In addition, there is a point whose distance
from the lattice is close to the covering radius, which can be written as a sum of at most n/ log n
points in S, hence it can be shown that the distance of one of them from the lattice approximates
the covering radius to within a factor of

√
n/ log n.

The reasoning above can be extended to any `p norm for 2 ≤ p ≤ ∞. Here, the bound on
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the distance from the lattice of a sum of points in S is based on what is known as the “type 2”
property of `p norms for 2 ≤ p < ∞ (see, e.g., [30]) and on the celebrated ‘six standard deviations’
theorem of Spencer for p = ∞ [34]. To obtain additional extensions of our results we use a theorem
on balancing vectors involving the `2 and other `p norms due to Banaszczyk [8]. The interest in
this theorem of Banaszczyk comes from a famous conjecture of Komlós whose implication to our
setting is presented in Section 3.2.

Some of the techniques used in the analysis of our algorithm were applied by Banaszczyk in [7]
to relate the covering radius of a lattice to another lattice parameter (namely, the nth successive
minimum). For the interested reader we overview such relations in Appendix A. In addition,
we note that the technique of applying an exponential running-time routine on sublattices of log-
arithmic rank in order to approximate a parameter of the whole lattice was previously used in
lattice algorithms. For example, recall that the LLL algorithm for SVP of [23] is based on a ba-
sis reduction which given a lattice basis transforms it into some other basis of the same lattice.
Roughly speaking, this reduction causes every two consecutive vectors in the basis to have a cer-
tain property, which was shown in [23] to be beneficial for the purpose of approximating SVP.
In an improvement of Schnorr [33], the requirement on every two consecutive basis vectors was
replaced by a requirement on every (roughly) log n consecutive basis vectors (namely, being a
Korkine-Zolotarev basis of a certain lattice [22]). This enabled him to apply an exponential-time
algorithm to every log n consecutive basis vectors to get a polynomial-time algorithm for SVP with
an improved approximation factor.

1.3 The Remote Set Problem on Linear Codes

The current paper is concerned with the lattice analogous of the Remote Set Problem (RSP) on
linear codes which was introduced by Alon, Panigrahy and Yekhanin [5]. Here we give a short
overview on this problem. In RSP on linear codes, given a linear space L ⊆ Fn

2 of dimension k the
goal is to find a set of O(n) points at least one of which is far from L with respect to the Hamming
distance. Besides the connection of this problem to the Nearest Codeword Problem (which is the
analogous of CVP for linear codes), this problem is motivated by the matrix rigidity approach to
circuit lower bounds in computational complexity theory, as explained below.

In 1977, Valiant [35] considered the problem of finding an explicit set S of O(n) points in Fn
2

such that for every linear space L ⊆ Fn
2 of dimension n

2 there exists a point in S whose Hamming
distance from L is at least nε for some fixed ε > 0. Whereas such a set is known to exist (even for
distance Ω(n)), no polynomial-time deterministic algorithm for constructing such a set is known.
Valiant showed that such construction implies a circuit lower bound for an explicit function. Nev-
ertheless, three decades later this problem is still open. This led the authors of [5] to suggest the
study of the relaxed question RSP in which the goal is to deterministically find a set containing a
point which is far from one linear space given as input (instead of satisfying this property for every
linear space of dimension n

2 ). They presented a deterministic polynomial-time algorithm for RSP
achieving remoteness Ω(log n). Note that their algorithm is for a special case of RSP, called the
Remote Point Problem, in which the algorithm is required to output only one point.
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1.4 Open Questions

Our work raises several open questions. It will be interesting to understand for which parameters
the Remote Set Problem can be deterministically solved in polynomial time. We have shown that
there exists a deterministic polynomial-time algorithm that given a lattice outputs a set of points
one of which has distance at least

√
log n/n times the covering radius. Can the guarantee on the

distance be improved? Can it be improved to the factor 1/2 for which this can be achieved by a
randomized algorithm [16]? Can one achieve the

√
log n/n factor (or even a 1/

√
n factor) by an

algorithm which outputs only one point instead of polynomially many points? Can it be achieved
for the `p norm for 1 ≤ p < 2?

1.5 Outline

The paper is organized as follows. In Section 2 we gather all the definitions on lattices and com-
putational lattice problems that we need in the paper. In Section 3 we present our algorithms for
RSP proving Theorems 1.1 and 1.2 and some extensions of them. In Section 4 we present appli-
cations of RSP to CRP including the proof of Theorem 1.3 and reductions from CRP to CVP. In
Appendix A we overview some inequalities stemming from [7, 8] involving the covering radius
of lattices in `p norms.

2 Preliminaries

Notations. For 1 ≤ p < ∞ the `p norm of a vector x ∈ Rm is defined as ‖x‖p = (∑m
i=1 |xi|p)1/p

and for p = ∞ it is defined as ‖x‖∞ = max1≤i≤m |xi|. The `p distance between two vectors
x, y ∈ Rm is defined as distp(x, y) = ‖x − y‖p. The `p distance of a vector x ∈ Rm from a set
S ⊆ Rm is defined as distp(x, S) = miny∈S distp(x, y). We say that x is r-far from S if distp(x, S) ≥ r.
When we omit the subscript p (or a superscript (p)) we refer to the the Euclidean norm `2.

Lattices. A lattice is a discrete additive subgroup of Rm. Equivalently, it is the set of all integer
combinations

L(b1, . . . , bn) =

{
n

∑
i=1

xibi : xi ∈ Z for all 1 ≤ i ≤ n

}
of n linearly independent vectors b1, . . . , bn in Rm (n ≤ m). If the lattice rank n equals its dimension
m we say that the lattice is full-rank. The set (b1, . . . , bn) is called a basis of the lattice. Note that a
lattice has many possible bases. We often represent a basis by an m by n matrix B having the basis
vectors as columns, and we say that the basis B generates the lattice L. In such case we write L =

L(B). The linear space spanned by B is denoted span(B) = {∑n
i=1 xibi : xi ∈ R for all 1 ≤ i ≤ n}.

A sublattice of L is a lattice L(S) ⊆ L generated by some linearly independent lattice vectors
S ⊆ L.

One basic parameter of a lattice L, denoted by λ
(p)
1 (L), is the minimum `p norm of a nonzero

vector in it. Equivalently, λ
(p)
1 (L) is the minimum `p distance between two distinct points in the

lattice L. This definition can be generalized to define the ith successive minimum as the smallest r
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such that B(p)(r) contains i linearly independent lattice points, where B(p)(r) denotes the `p ball

of radius r centered at the origin. More formally, λ
(p)
i (L) = min{r : dim(span(L ∩ B(p)(r))) ≥ i}.

Another parameter associated with lattices is the covering radius. For a lattice basis B =

(b1, . . . , bn) the covering radius of L(B) with respect to the `p norm is defined as

ρ(p)(L(B)) = max
x∈span(B)

distp(x,L(B)).

Hence, ρ(p)(L(B)) ≤ r means that for any x ∈ span(B) there exists a lattice point y ∈ L(B) such
that distp(x, y) ≤ r. Conversely, ρ(p)(L(B)) > r means that there exists some x ∈ span(B) such
that any lattice point y ∈ L(B) satisfies distp(x, y) > r. A deep hole of L(B) is a point x ∈ span(B)
at distance distp(x,L(B)) = ρ(p)(L(B)) from the lattice.

The following lemma shows that in order to find a point quite far from a lattice L(B) it suffices
to consider linear combinations of vectors in B with coefficients in {0, 1

2}. This lemma (in more
general forms) was proved in [7, 16], and we repeat its proof here for completeness.

Lemma 2.1. For every 1 ≤ p ≤ ∞ and any lattice basis B = (b1, . . . , bn) there exists a vector

v = a1 · b1 + . . . + an · bn

with aj ∈ {0, 1
2} for all 1 ≤ j ≤ n such that distp(v,L(B)) ≥ 1

2 · ρ(p)(L(B)).

Proof: Let w be a deep hole of the lattice L(B) with respect to the `p norm. Consider the point 2w
and observe that, like any point in span(B), its `p distance from L(B) is at most ρ(p)(L(B)). This
means that there exists a lattice point u ∈ L(B) such that distp(u, 2w) ≤ ρ(p)(L(B)) and hence
distp(

1
2 · u, w) ≤ 1

2 · ρ(p)(L(B)). Now, by triangle inequality,

distp(
1
2
· u,L(B)) ≥ distp(w,L(B))− distp(

1
2
· u, w) ≥ 1

2
· ρ(p)(L(B)).

Finally, observe that 1
2 · u ∈

1
2 · L(B), so by reducing modulo 1 its coefficients as a linear combina-

tion of B, we obtain a vector of the required form with the same `p distance from L(B).

For a sequence of vectors (b1, . . . , bn) define the corresponding Gram-Schmidt orthogonalized
vectors b̃1, . . . , b̃n by

b̃i = bi −
i−1

∑
j=1

µi,jb̃j, µi,j =
〈bi, b̃j〉
〈b̃j, b̃j〉

.

In words, b̃i is the component of bi orthogonal to b1, . . . , bi−1.

Computational Lattice Problems. In what follows we define the lattice computational problems
considered in this paper. For an in-depth introduction to the computational aspects of lattices we
refer the reader to the book of Micciancio and Goldwasser [27]. For any 1 ≤ p ≤ ∞ and any
approximation factor γ ≥ 1 (which is usually considered as a function of the lattice rank n) we
define the following computational problems.
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Definition 2.2 (Covering Radius Problem). An instance of GapCRP(p)
γ is a pair (B, r) where B ∈ Qm×n

is a rank n lattice basis and r ∈ Q is a rational number. In YES instances ρ(p)(L(B)) ≤ r and in NO

instances ρ(p)(L(B)) > γ · r.

Definition 2.3 (Closest Vector Problem). An instance of GapCVP(p)
γ is a triple (B, t, r) where B ∈ Qm×n

is a rank n lattice basis, t ∈ Qm is a target point, and r ∈ Q is a rational number. In YES instances
distp(t,L(B)) ≤ r and in NO instances distp(t,L(B)) > γ · r.

The main problem under study in the present paper is the Remote Set Problem (RSP), which
can be viewed as a generalized search variant of CRP and is defined for any 1 ≤ p ≤ ∞ and
d, γ ≥ 1 as follows.

Definition 2.4 (Remote Set Problem). An instance of RSP(p)
d,γ is a rank n lattice basis B ∈ Qm×n. The

goal is to find a set S ⊆ span(B) of size |S| ≤ d containing a point v such that

distp(v,L(B)) ≥ 1
γ
· ρ(p)(L(B)).

Balancing Vectors. The analysis of the main algorithm presented in this work relies on upper
bounds on the length of linear combinations with ±1 coefficients of a given set of vectors. In the
following we provide the needed background.

In Banach spaces theory, a normed space X is said to have type 2 if there exists a constant T < ∞
such that for every n and x1, . . . , xn ∈ X,(

E ‖
n

∑
i=1

ε i · xi‖2
X

)1/2
≤ T ·

( n

∑
i=1
‖xi‖2

X
)1/2, (1)

where the expectation is over a uniform choice of signs ε1, . . . , εn ∈ {−1,+1}. For example, it is
easy to see that the Euclidean space `2 has type 2, since for `2 equality holds in (1) with T = 1 as
follows from the parallelogram law. It is well-known that for every 2 ≤ p < ∞ the `p normed
space has type 2 with T = c · √p for some absolute constant c > 0 (see, e.g., [30]). In particular,
for every n vectors x1, . . . , xn there exists some choice of signs for which the corresponding linear
combination has `p norm at most O(

√
n) times the maximum `p norm of the xi’s. This is stated in

the following lemma.

Lemma 2.5. For every 2 ≤ p < ∞ there exists a constant cp > 0 for which the following holds. For every
n vectors x1, . . . , xn ∈ Rm there exist ε1, . . . , εn ∈ {−1,+1} such that

‖
n

∑
i=1

ε i · xi‖p ≤ cp ·
√

n · max
1≤i≤n

‖xi‖p.

A similar statement, motivated by questions on set systems in combinatorial discrepancy, is
known for the `∞ norm. By a simple probabilistic argument it can be seen that every set of n
vectors in Rm has a linear combination with±1 coefficients whose `∞ norm is at most O(

√
n log m)

times the maximum `∞ norm of the vectors. Interestingly, Spencer showed in 1985 that this can
be improved to O(

√
n log (2m/n)) [34]. For the special case of m = n he showed a bound of

6
√

n, commonly referred to as the ‘six standard deviations’ theorem. In a recent breakthrough,
Bansal [9] gave algorithmic results related to Spencer’s bound.
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Theorem 2.6 ([34]). There exists a constant c∞ > 0 such that for every n vectors x1, . . . , xn ∈ Rm

(m ≥ n) there exist ε1, . . . , εn ∈ {−1,+1} such that

‖
n

∑
i=1

ε i · xi‖∞ ≤ c∞ ·
√

n · log (2m/n) · max
1≤i≤n

‖xi‖∞.

3 Algorithms for the Remote Set Problem

In this section we present our deterministic polynomial-time algorithms for RSP. We first prove
Theorem 1.2 (and some extensions) and then turn to consider a special case of RSP, called the
Remote Point Problem, proving Theorem 1.1.

3.1 Proof of Theorem 1.2

We start with the following statement from which we derive Theorem 1.2.

Theorem 3.1. For every 2 ≤ p < ∞ and every k = k(n) ≥ 1 there exists a deterministic 2k · sO(1) time
algorithm for RSP

(p)
d,γ with d(n) = O( n

k · 2k) and γ(n) = O(
√ n

k ), where n denotes the lattice rank and

s denotes the input size. The same holds for p = ∞ with γ(n, m) = O(
√

n
k · log (2mk/n)), where m

denotes the lattice dimension.

Proof: Assume for simplicity that k = k(n) divides n. We consider the algorithm that given a
lattice basis B = (b1, . . . , bn) first partitions its vectors into n

k sets of size k each. Then the algo-
rithm outputs all vectors in space which form a linear combination with all coefficients in {0, 1

2}
of vectors in one of these sets. More precisely, for every 1 ≤ i ≤ n

k let Si be the set of all vectors of
the form

a1 · b(i−1)k+1 + . . . + ak · bik

where aj ∈ {0, 1
2} for all j. Our algorithm outputs the union S = ∪n/k

i=1Si (see Figure 1). Observe
that |S| ≤ n

k · 2k and that S can be constructed in time 2k · sO(1) where s is the input size.

Remote Set Problem(B)
Input: A lattice basis B = (b1, . . . , bn) ∈ Qm×n.
Output: A set S of n

k · 2k vectors in span(B) at least one of which is far from L(B).

• For every 1 ≤ i ≤ n
k ,

1. Define Bi = (b(i−1)k+1, . . . , bik).

2. Construct the set Si of all vectors that form a linear combination with all coeffi-
cients in {0, 1

2} of the vectors in Bi.

• Output S = ∪n/k
i=1Si.

Figure 1: An Algorithm for the Remote Set Problem
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Fix some 2 ≤ p < ∞. We claim that there exists a vector in S whose `p distance from L(B) is

at least 1
2·cp
·
√

k
n · ρ(p)(L(B)), where cp > 0 is the constant from Lemma 2.5 which depends solely

on p. Assume for contradiction that this is not the case. By Lemma 2.1, there exists a vector

v = a1 · b1 + . . . + an · bn

with aj ∈ {0, 1
2} for all 1 ≤ j ≤ n such that distp(v,L(B)) ≥ 1

2 · ρ(p)(L(B)). Write

v =
1
2
(v1 + . . . + vn/k)

where for every 1 ≤ i ≤ n
k , vi = 2 · (a(i−1)k+1 · b(i−1)k+1 + . . . + aik · bik). Since 1

2 · vi ∈ S our
assumption implies that there exists a lattice vector ui ∈ L(B) such that

‖1
2
· vi − ui‖p <

1
2 · cp

·
√

k
n
· ρ(p)(L(B)). (2)

For every 1 ≤ i ≤ n
k , denote si =

1
2 · vi− ui, and apply Lemma 2.5 to obtain ε1, . . . , εn/k ∈ {−1,+1}

such that

‖
n/k

∑
i=1

ε i · si‖p ≤ cp ·
√

n
k
· max

1≤i≤n/k
‖si‖p < cp ·

√
n
k
· 1

2 · cp
·
√

k
n
· ρ(p)(L(B)) =

1
2
· ρ(p)(L(B)),

as follows from (2). Finally, observe that the difference between v and ∑n/k
i=1 ε i · si is a lattice vector,

hence

distp(v,L(B)) = distp(
n/k

∑
i=1

ε i · si,L(B)) ≤ ‖
n/k

∑
i=1

ε i · si‖p <
1
2
· ρ(p)(L(B)),

in contradiction to our choice of v.
The analysis for p = ∞ is almost identical to the analysis described above. The only difference

is in applying Spencer’s theorem (Theorem 2.6) instead of Lemma 2.5 to find a short ±1 combina-
tion of the si’s.

Notice that in the `∞ case the remoteness parameter γ obtained in Theorem 3.1 does not de-
pend only on the rank n but also on the dimension m. Hence, let us state it again for the special
case of full-rank lattices (i.e., m = n) which is usually considered.

Theorem 3.2. For every k = k(n) ≥ 1 there exists a deterministic 2k · sO(1) time algorithm for RSP(∞)
d,γ on

full-rank lattices with d(n) = O( n
k · 2k) and γ(n) = O(

√
n·log (2k)

k ), where s denotes the input size.

Now Theorem 1.2 is easily derived from Theorem 3.1 by choosing k = c log n where n is the
lattice rank and c is a constant, as stated in the following corollaries. We note that one can obtain
a slightly stronger version of these corollaries by choosing k = O(log s) where s is the input size.

Corollary 3.3. For every 2 ≤ p < ∞ and every constant c ≥ 1, there exists a deterministic polynomial-
time algorithm for RSP(p)

d,γ with d(n) = nO(c) and γ(n) = O(
√

n
c log n ).

Corollary 3.4. For every constant c ≥ 1, there exists a deterministic polynomial-time algorithm for

RSP
(∞)
d,γ on full-rank lattices with d(n) = nO(c) and γ(n) = O(

√
n·log log n

c log n ).
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3.2 Extensions of Theorem 1.2

In the analysis of our algorithm for RSP we applied Lemma 2.5 and Theorem 2.6 which roughly
speaking say that every set of vectors has a linear combination with ±1 coefficients of small `p

norm compared to the maximum `p norm of the vectors in the set. It turns out that similar ques-
tions were studied where the goal is to minimize the `p norm of the linear combination compared
to the maximum `2 norm of the vectors in the set. This is stated in the following theorem which
stems from a paper of Banaszczyk [8] (see also [10, Propositions 24, 25]).

Theorem 3.5 ([8]). For every 2 ≤ p ≤ ∞ there exists a constant cp > 0 for which the following holds. For
every n vectors x1, . . . , xn ∈ Rm there exist ε1, . . . , εn ∈ {−1,+1} such that for 2 ≤ p < ∞

‖
n

∑
i=1

ε i · xi‖p ≤ cp · n1/p · max
1≤i≤n

‖xi‖2,

and for p = ∞,

‖
n

∑
i=1

ε i · xi‖∞ ≤ c∞ ·
√

1 + log n · max
1≤i≤n

‖xi‖2.

For p = ∞, a famous conjecture of Komlós asserts the following.

Conjecture 3.6. [Komlós Conjecture] There exists a constant c > 0 such that for every n vectors x1, . . . , xn ∈
Rm there exist ε1, . . . , εn ∈ {−1,+1} such that

‖
n

∑
i=1

ε i · xi‖∞ ≤ c · max
1≤i≤n

‖xi‖2.

Now we observe that Theorem 3.5 can be used to prove an additional property of the output
of our algorithm for RSP. The use of Lemma 2.5 and Theorem 2.6 in the proof implied that at
least one of points in the output has large `p distance from the lattice compared to the covering
radius in the `p norm. However, applying Theorem 3.5 in the proof yields that at least one of the
vectors has large `2 distance from the lattice, still compared to the covering radius in the `p norm.
Theorems 3.7 and 3.8 below follow from the algorithm presented in the proof of Theorem 3.1 (see
Figure 1) for k = Θ(log n) and k = 1 respectively. We omit the proof details.

Theorem 3.7. For every 2 ≤ p < ∞ there exists a constant cp > 0 for which the following holds. For
every c ≥ 1 there exists a deterministic polynomial-time algorithm that given a rank n lattice L outputs a
set of nO(c) points at least one of which has `2 distance at least cp · ( c log n

n )1/p · ρ(p)(L) from L.

Theorem 3.8. There exists a constant c > 0 and a deterministic polynomial-time algorithm that given a
rank n lattice L outputs a set of n points at least one of which has `2 distance at least c√

1+log n
· ρ(∞)(L)

from L. Assuming Conjecture 3.6, one of the points has `2 distance at least c · ρ(∞)(L) from L.

3.3 Proof of Theorem 1.1

The Remote Point Problem is a special case of the Remote Set Problem, in which the goal is to
output one point which is far from the lattice (i.e., RSPd,γ with d = 1). In the following we observe
that the LLL algorithm [23] can be used to deterministically and efficiently find a point in space
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whose distance from the lattice approximates the covering radius to within a factor exponential in
the rank n. We present the result for the `2 norm, but notice that similar results can be derived for
an arbitrary `p norm by standard relations between `p norms.

Theorem 3.9. There exists a deterministic polynomial-time algorithm for RSPd,γ with d(n) = 1 and
γ(n) = 2n/2.

Proof: It is well-known that given a lattice the LLL algorithm [23] constructs a reduced basis
B = (b1, . . . , bn) that generates it and satisfies for every i, ‖b̃i+1‖2 ≥ 1

2 · ‖b̃i‖2, where b̃1, . . . , b̃n

are the Gram-Schmidt orthogonalized vectors. In addition, we recall that Babai’s nearest plane
algorithm for CVP [6], on input lattice basis B and a target point t, produces a lattice vector whose
squared distance from t is at most 1

4 ·∑
n
i=1 ‖b̃i‖2. This implies that

ρ(L(B)) ≤
√

1
4
·

n

∑
i=1
‖b̃i‖2 ≤

√
1
4
·

n

∑
i=1

2n−i‖b̃n‖2 ≤ 2n/2−1 · ‖b̃n‖.

For the Remote Point Problem consider the algorithm which given a lattice calculates an LLL-
reduced basis B = (b1, . . . , bn) generating it and outputs 1

2 · b̃n. Since the projection of every vector
in L(B) to span(b̃n) is c · b̃n for some c ∈ Z we obtain

dist(
1
2
· b̃n,L(B)) ≥ 1

2
· ‖b̃n‖ ≥

1
2n/2 · ρ(L(B)).

4 On the Complexity of the Covering Radius Problem

In this section we describe some applications of deterministic and efficient algorithms for RSP to
the complexity of the Covering Radius Problem (CRP).

4.1 Proof of Theorem 1.3

The following lemma relates RSP to proving that CRP with certain approximation factors is in NP.

Lemma 4.1. For every 1 ≤ p ≤ ∞, d = d(n) and γ = γ(n), if there exists a deterministic polynomial-
time algorithm for RSP(p)

d,γ then GapCRP
(p)
γ is in NP.

Proof: Let A be a deterministic polynomial-time algorithm for RSP
(p)
d,γ. On input GapCRP(p)

γ in-
stance (B, r) we consider the following NP verifier: first run algorithm A on the lattice basis B to

obtain d points t1, . . . , td ∈ span(B) such that at least one of them is ρ(p)(L(B))
γ -far from L(B) with

respect to `p distance. Then guess (non-deterministically) d vectors u1, . . . , ud, and accept if and
only if ui belongs to L(B) and satisfies distp(ui, ti) ≤ r for every 1 ≤ i ≤ d. Notice that this can be
done in polynomial time, as d is bounded from above by the running time of A.

We turn to prove correctness. If (B, r) is a YES instance of GapCRP
(p)
γ then ρ(p)(L(B)) ≤ r

and therefore there exist u1, . . . , ud for which the verifier accepts. On the other hand, if (B, r) is a
NO instance of GapCRP(p)

γ then ρ(p)(L(B)) > γ · r. Since there exists some 1 ≤ j ≤ d for which

distp(tj,L(B)) ≥ ρ(p)(L(B))
γ > r, there is no guess for which the verifier accepts.
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The following theorems are immediate consequences of Lemma 4.1 and Corollaries 3.3 and 3.4
confirming Theorem 1.3.

Theorem 4.2. For every 2 ≤ p < ∞ and every constant c ≥ 1, GapCRP(p)
γ is in NP for γ(n) =

√
n

c log n .

Theorem 4.3. For every constant c ≥ 1, GapCRP(∞)
γ on full-rank lattices is in NP for γ(n) =

√
n log log n

c log n .

4.2 Reductions from CRP to CVP

We now show how algorithms for RSP can be used for reducing CRP instances to CVP instances.
Lemmas 4.4 and 4.6 deal with Cook and Karp reductions respectively.

Lemma 4.4. For every 1 ≤ p ≤ ∞, d = d(n), γ = γ(n) and γ′ = γ′(n), if there exists a deterministic
polynomial-time algorithm for RSP

(p)
d,γ then there exists a deterministic rank-preserving polynomial-time

Cook reduction from GapCRP
(p)
γ′ to GapCVP

(p)
γ′/γ.

Proof: Let A be a deterministic polynomial-time algorithm for RSP(p)
d,γ and fix some γ′. We use A

to describe a deterministic rank-preserving polynomial-time Cook reduction from GapCRP
(p)
γ′ to

GapCVP
(p)
γ′/γ. Let (B, r) be a GapCRP

(p)
γ′ instance, where the lattice L(B) has rank n. The reduction

runs A on B to obtain d points t1, . . . , td ∈ span(B) such that for some 1 ≤ j ≤ d the point tj

satisfies distp(tj,L(B)) ≥ ρ(p)(L(B))
γ . Then, the reduction calls the GapCVP

(p)
γ′/γ oracle on every

input (B, ti, r), 1 ≤ i ≤ d, and accepts if and only if the oracle accepts all these inputs.
We now prove the correctness of the reduction. Assume that (B, r) is a YES instance of GapCRP(p)

γ′ ,

that is ρ(p)(L(B)) ≤ r. This implies that for every 1 ≤ i ≤ d, distp(ti,L(B)) ≤ r, and hence all the

oracle calls are accepted. On the other hand, assume that (B, r) is a NO instance of GapCRP(p)
γ′ , that

is ρ(p)(L(B)) > γ′ · r. This implies that there exists some 1 ≤ j ≤ d for which

distp(tj,L(B)) ≥ ρ(p)(L(B))
γ

>
γ′ · r

γ
,

and hence at least one of the oracle calls to GapCVP
(p)
γ′/γ is rejected.

The following corollary, easily derived from Lemma 4.4 and Corollaries 3.3 and 3.4, says that
there exists a Cook reduction from CRP to CVP with an O(

√
n

log n ) loss in the approximation factor.

As was mentioned before, the only other similar result we are aware of is implied by a paper of
Micciancio [25] and gives a

√
n loss in the approximation factor for the Euclidean norm.

Corollary 4.5. For every 2 ≤ p < ∞, every constant c ≥ 1 and every γ = γ(n) there exists a determinis-
tic rank-preserving polynomial-time Cook reduction from GapCRP

(p)
γ to GapCVP

(p)
γ·
√

c log n/n
. For p = ∞,

the reduction is from GapCRP
(∞)
γ to GapCVP

(∞)

γ·
√

c log n/(n log log n)
restricted to full-rank lattices.

We turn to prove that algorithms for RSP can be used to obtain Karp reductions from CRP to
CVP. Here, in contrast to Lemma 4.4, the parameter d of RSP affects the loss in the approximation
factor.
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Lemma 4.6. For every 1 ≤ p < ∞, d = d(n), γ = γ(n) and γ′ = γ′(n), if there exists a deterministic
polynomial-time algorithm for RSP

(p)
d,γ then there exists a deterministic polynomial-time Karp reduction

from GapCRP
(p)
γ′ to GapCVP

(p)
γ̃ where γ̃ = γ′

γ·d1/p . For p = ∞ the same holds for γ̃ = γ′/γ.

Proof: Fix some 1 ≤ p < ∞. Let A be a deterministic polynomial-time algorithm for RSP(p)
d,γ and

fix some γ′. We use A to describe a deterministic polynomial-time Karp reduction from GapCRP
(p)
γ′

to GapCVP
(p)
γ̃ . Let (B, r) be a GapCRP

(p)
γ′ instance, where the lattice L(B) has rank n. The reduction

runs A on B to obtain a set S of d points t1, . . . , td ∈ span(B) such that for some 1 ≤ j ≤ d the

point tj satisfies distp(tj,L(B)) ≥ ρ(p)(L(B))
γ . The reduction outputs the instance (B′, t, r′) where

B′ = B⊗ Id (i.e., a basis of the direct sum of d copies of L(B)), t = (t1, . . . , td) is the concatenation
of the points of S, and r′ = d1/p · r. Clearly, the reduction can be implemented in polynomial time.

We turn to prove the correctness of the reduction. Assume that (B, r) is a YES instance of
GapCRP

(p)
γ′ , that is ρ(p)(L(B)) ≤ r. This implies that for every 1 ≤ i ≤ d there exists a lattice vector

ui ∈ L(B) such that ‖ti − ui‖p ≤ r. Define u = (u1, . . . , ud) and notice that u belongs to L(B′)

and that ‖t− u‖p ≤ d1/p · r = r′. This implies that (B′, t, r′) is a YES instance of GapCVP(p)
γ̃ . On

the other hand, assume that (B, r) is a NO instance of GapCRP(p)
γ′ , that is ρ(p)(L(B)) > γ′ · r. This

implies that there exists some 1 ≤ j ≤ d for which

distp(tj,L(B)) ≥ ρ(p)(L(B))
γ

>
γ′ · r

γ
=

γ′

γ · d1/p · r
′ = γ̃ · r′,

and hence distp(t,L(B′)) > γ̃ · r′, so (B′, t, r′) is a NO instance of GapCVP(p)
γ̃ .

Finally, it is easy to see that for p = ∞ the same reduction reduces GapCRP
(∞)
γ′ to GapCVP

(∞)
γ′/γ.

Acknowledgement

We would like to deeply thank Oded Regev for valuable and fruitful discussions.

References

[1] D. Aharonov and O. Regev. Lattice problems in NP intersect coNP. Journal of the ACM,
52(5):749–765, 2005. Preliminary version in FOCS’04.

[2] M. Ajtai. Generating hard instances of lattice problems. In Complexity of computations and
proofs, volume 13 of Quad. Mat., pages 1–32. Dept. Math., Seconda Univ. Napoli, Caserta,
2004.

[3] M. Ajtai, R. Kumar, and D. Sivakumar. A sieve algorithm for the shortest lattice vector prob-
lem. In Proc. 33th ACM Symp. on Theory of Computing (STOC), pages 601–610, 2001.

[4] M. Ajtai, R. Kumar, and D. Sivakumar. Sampling short lattice vectors and the closest lattice
vector problem. In Proc. of 17th IEEE Annual Conference on Computational Complexity (CCC),
pages 53–57, 2002.

15



[5] N. Alon, R. Panigrahy, and S. Yekhanin. Deterministic approximation algorithms for the
nearest codeword problem. In APPROX-RANDOM, volume 5687 of Lecture Notes in Computer
Science, pages 339–351. Springer, 2009.

[6] L. Babai. On Lovász lattice reduction and the nearest lattice point problem. Combinatorica,
6(1):1–13, 1986.

[7] W. Banaszczyk. Balancing vectors and convex bodies. Studia Math., 106(1):93–100, 1993.

[8] W. Banaszczyk. Balancing vectors and gaussian measures of n-dimensional convex bodies.
Random Struct. Algorithms, 12(4):351–360, 1998.

[9] N. Bansal. Constructive algorithms for discrepancy minimization. In FOCS, pages 3–10, 2010.
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A The Covering Radius and the nth Successive Minimum in `p Norms

In this section we prove several inequalities relating the covering radius and the nth successive
minimum in `p norms of rank n lattices. The presented inequalities follow from the papers [7, 8]
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of Banaszczyk. Since the analysis of our algorithm for RSP involves similar techniques, we have
decided to include them in this appendix.

We start with the following theorem which says that for any `p norm for 2 ≤ p < ∞ the
covering radius of a rank n lattice cannot, up to some multiplicative constant, be higher than

√
n

times the nth successive minimum of the lattice. We note that for the special case of p = 2 this
follows from Babai’s nearest plane algorithm [6] (see, e.g., [27, Theorem 7.9, page 138]).

Theorem A.1. For every 2 ≤ p < ∞ there exists a constant cp > 0 such that for every rank n lattice L,

ρ(p)(L) ≤ cp ·
√

n · λ(p)
n (L).

Proof: By definition of λ
(p)
n , there exist n linearly independent lattice vectors b1, . . . , bn ∈ L such

that ‖bi‖p ≤ λ
(p)
n (L) for all 1 ≤ i ≤ n. Consider the sublattice L′ = L(b1, . . . , bn) ⊆ L. By

Lemma 2.1, there exists a vector v = ∑n
i=1 ai · bi with aj ∈ {0, 1

2} for all 1 ≤ j ≤ n such that
distp(v,L′) ≥ 1

2 · ρ(p)(L′). Apply Lemma 2.5 to the vectors a1 · b1, . . . , an · bn to obtain ε1, . . . , εn ∈
{−1,+1} satisfying

‖
n

∑
i=1

ε i · ai · bi‖p ≤ cp ·
√

n · max
1≤i≤n

‖ai · bi‖p ≤
cp ·
√

n
2

· λ(p)
n (L).

Since the lattice L and its sublattice L′ have the same span, we have ρ(p)(L) ≤ ρ(p)(L′). Observe
that the difference between v and ∑n

i=1 ε i · ai · bi is a lattice vector of L′, hence

ρ(p)(L) ≤ ρ(p)(L′) ≤ 2 · distp(v,L′)

= 2 · distp(
n

∑
i=1

ε i · ai · bi,L′) ≤ 2 · ‖
n

∑
i=1

ε i · ai · bi‖p ≤ cp ·
√

n · λ(p)
n (L).

Theorem A.1 has an analogous theorem for the `∞ norm. As in the proof of Theorem 3.1, for
`∞ we apply Spencer’s theorem (Theorem 2.6) instead of Lemma 2.5. Since the proof is almost
identical to the one of Theorem A.1 we state it below and omit the proof details.

Theorem A.2. There exists a constant c > 0 such that for every m-dimensional lattice L of rank n,

ρ(∞)(L) ≤ c ·
√

n · log (2m/n) · λ(∞)
n (L).

Finally, as in Section 3.2, Theorem 3.5 can be used to obtain the following statement, which
relates the covering radius of a lattice in the `p norm to its nth successive minimum in the `2

norm.

Theorem A.3. For every 2 ≤ p < ∞ there exists a constant cp > 0 such that for every rank n lattice L,

ρ(p)(L) ≤ cp · n1/p · λ(2)
n (L).

For p = ∞,
ρ(∞)(L) ≤ c∞ ·

√
1 + log n · λ(2)

n (L),
for some constant c∞ > 0. Assuming Conjecture 3.6,

ρ(∞)(L) ≤ c∞ · λ(2)
n (L).

18


	Introduction
	Our Contribution
	Techniques
	The Remote Set Problem on Linear Codes
	Open Questions
	Outline

	Preliminaries
	Algorithms for the Remote Set Problem
	Proof of Theorem 1.2
	Extensions of Theorem 1.2
	Proof of Theorem 1.1

	On the Complexity of the Covering Radius Problem
	Proof of Theorem 1.3
	Reductions from CRP to CVP

	The Covering Radius and the nth Successive Minimum in p Norms

