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Abstract

We show that for every n-dimensional lattice L the torus Rn/L can be embedded with distortion
O(n ·

√
log n) into a Hilbert space. This improves the exponential upper bound of O(n3n/2) due to Khot

and Naor (FOCS 2005, Math. Annal. 2006) and gets close to their lower bound of Ω(
√
n). We also

obtain tight bounds for certain families of lattices.
Our main new ingredient is an embedding that maps any point u ∈ Rn/L to a Gaussian function

centered at u in the Hilbert space L2(Rn/L). The proofs involve Gaussian measures on lattices, the
smoothing parameter of lattices and Korkine-Zolotarev bases.

1 Introduction

An n-dimensional full-rank lattice L ⊆ Rn is the set of all integer combinations of n linearly independent
vectors. Such a lattice defines the torus Rn/L, i.e., the space Rn where two points are identified if and only
if the difference between them is a lattice vector. For u, v ∈ Rn/L the distance distRn/L(u, v) in the torus
Rn/L is defined as the distance between a representative of u− v in Rn from the lattice L.

In this paper we study the ability to embed a torus Rn/L into a Hilbert space in a distance-preserving
manner. For a lattice L we are interested in a Hilbert space L2, an embedding H : Rn/L → L2 and a
number c2 > 0 such that for any u, v ∈ Rn/L,

distRn/L(u, v) ≤ distL2(H(u),H(v)) ≤ c2 · distRn/L(u, v).

The distortion of an embedding H is the least c2 for which the above holds. The least distortion that one can
get over all the embeddings H is known as the Euclidean distortion of Rn/L and is denoted by c2(Rn/L).

For example, consider the n-dimensional lattice Zn. The torus Rn/Zn can be embedded into the Eu-
clidean space R2n by the embedding H : Rn/Zn → R2n defined by

H(x1, . . . , xn) = (cos 2πx1, sin 2πx1, . . . , cos 2πxn, sin 2πxn).

It is easy to see that H has a constant distortion independent of n. It is not difficult to extend this example
and to achieve an embedding with constant distortion for every lattice generated by n orthogonal vectors.

Metric embeddings have been extensively investigated in the last few years by the theoretical computer
science community. One of the main motivations for research on embedding metric spaces comes from
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applications to designing geometric approximation algorithms. Indeed, in order to approximate the distance
between two points in a certain metric space one can apply an efficient low distortion embedding and then
compute (or approximate) the distance between the corresponding embedded points. Studying the Euclidean
distortion of flat tori might have applications to the complexity of lattice problems, and might also lead to
more efficient algorithms for lattice problems through the use of our metric embeddings. For example, con-
sider the Closest Vector Problem with Preprocessing (CVPP). In this problem a (not necessarily efficient)
preprocessing step is applied to the lattice. Then, given a target point, we are supposed to efficiently ap-
proximate its distance from the lattice. Embedding flat tori suggests a special type of algorithms for CVPP,
in which the data performed in the preprocessing step enables to approximate distances in the embedded
space efficiently. A recent result by Micciancio and Voulgaris [13] demonstrates how CVPP can lead to
breakthroughs for standard lattice problems. For further information on CVPP we refer the reader to [6].

In this work we study the distortion required to embed an n-dimensional torus into a Hilbert space.
This question was introduced by Khot and Naor in [8] who provided a partial answer as stated below.
The following theorem provides a lower bound on c2(Rn/L) in terms of λ1(L∗) and µ(L∗), which are,
respectively, the length of a shortest nonzero vector and the covering radius of L∗, the dual lattice of L.

Theorem 1.1 ([8]). For any n ≥ 1 and an n-dimensional lattice L, c2(Rn/L) = Ω
(
λ1(L∗)
µ(L∗) ·

√
n
)

.

It is known that for every large enough n there exists an n-dimensional self-dual lattice L (i.e., L = L∗)
such that λ1(L) = Θ(µ(L)). This fact is due to Conway and Thompson; see [14, Page 46] for details.
Theorem 1.1 and this family of lattices imply that for any large enough n there exists an n-dimensional
lattice L for which c2(Rn/L) = Ω(

√
n). We note that in [8] it was shown that the bound in Theorem 1.1

holds even for embeddings into the space L1. The next theorem shows an upper bound on c2(Rn/L) for n-
dimensional lattices and in particular implies that the supremum of c2(Rn/L) over all n-dimensional lattices
L is finite.

Theorem 1.2 ([8]). For any n ≥ 1 and an n-dimensional lattice L, c2(Rn/L) = O(n3n/2).

We note that the true performance of the embedding of Khot and Naor used in the proof of Theorem 1.2
is not clear. Yet, it can be shown that there are lattices for which the distortion achieved by their embedding
is super-polynomial. We discuss this issue in Section 7.

1.1 Our Results

The gap between the above lower and upper bounds on c2(Rn/L) is huge. In this work we significantly
reduce this gap. Our main result is that for every lattice the torus Rn/L can be embedded into a Hilbert
space with distortion slightly higher than linear in n.

Theorem 1.3. For any n ≥ 1 and an n-dimensional lattice L, c2(Rn/L) = O(n ·
√
log n).

For n-dimensional lattices L with ratio µ(L)
λ1(L) ≤ no(n) we provide the following better bound.

Theorem 1.4. For any n ≥ 1 and an n-dimensional lattice L, c2(Rn/L) = O
(√

n · log
(
4µ(L)
λ1(L)

))
.

Notice that Theorem 1.1 yields that the bound in Theorem 1.4 is tight up to a multiplicative constant for
the self-dual lattices that were mentioned above (see Corollary 5.3).

Finally, we observe that Theorem 1.1 can be slightly improved to the following.

Theorem 1.5. For any n ≥ 1 and an n-dimensional lattice L, c2(Rn/L) ≥ λ1(L∗)·µ(L)
4
√
n

.

It can be shown that µ(L) · µ(L∗) ≥ Ω(n) holds for any n-dimensional lattice and hence Theorem 1.5
improves Theorem 1.1 (see Remark 6.2 in Section 6).
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1.2 Intuitive Overview of Proofs and Techniques

Our goal is to construct, given a lattice L, a function H from the torus Rn/L to a Hilbert space such that
H preserves distances up to a multiplicative factor that is as small as possible. Our basic idea is to map any
u ∈ Rn to the Gaussian function defined on Rn centered at u with parameter s, i.e., the function mapping
x ∈ Rn to e−π∥(x−u)/s∥2 . It is not difficult to see that the L2 distance between H(u) and H(v) depends
more or less linearly on the distance between u and v as long as the latter is at most s, beyond which the
distance between H(u) and H(v) is saturated and no longer increases linearly. This is illustrated in the left
side of Figure 1.

However, the embedding defined above is not an embedding of Rn/L because it is not L-periodic. We
therefore replace the Gaussian function centered at u with the sum of all Gaussian functions centered at
points in u+ L, i.e., all the shifts of u by vectors of L. See the right side of Figure 1.
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Figure 1: The left plot shows the L2 distance between the (one-dimensional) Gaussian function centered
at 0 and the Gaussian function centered at u ∈ R (as a function of u; s = 1). The right plot shows the
L2 distance between the sum of all Gaussian functions centered at points in Z and the sum of all Gaussian
functions centered at points in u+ Z (as a function of u; s = 0.3).

An important role in the performance of our basic embedding is played by the choice of the parameter
s. Notice that we cannot take s to be significantly smaller than the covering radius of L (the maximum
distance between two elements in Rn/L). Indeed, as mentioned above, the distance between the embedded
functions is saturated beyond distance s, thereby leading to a distortion of at least µ(L)/s. On the other
hand, s cannot be larger than λ1(L): for such s, small shifts in the direction of a shortest vector of L
are much less noticeable than shifts in directions orthogonal to it, and this creates a huge distortion. By
choosing s to be slightly smaller than λ1(L) our basic embedding achieves distortion proportional to µ(L)

λ1(L)
(see Theorem 5.2).

In order to improve the distortion we need two more ideas. First, we combine several basic embeddings
for various choices of the parameter s in the range [λ1(L), µ(L)]. The idea is that every distance in Rn/L
is handled by at least one of these choices. This proves Theorem 1.4. The second idea which is used in the
proof of Theorem 1.3 is to use our basic embedding on projected lattices using Korkine-Zolotarev bases.

In our analysis of the basic embedding we employ and extend techniques originating in a paper by
Banaszczyk [4] that were found useful in several recent papers on the complexity of lattice problems (see,
e.g., [1]).
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1.3 Open Question

As mentioned before, we show in this paper that any n-dimensional lattice L satisfies c2(Rn/L) = O(n ·√
log n), and it was shown in [8] that there are lattices for which c2(Rn/L) = Ω(

√
n). The main open

question raised by our work is the following.

Question 1.6. Is it true that for any n-dimensional lattice L, c2(Rn/L) = O(
√
n)?

We observe that a positive answer to this question using Theorem 1.5 immediately implies that any n-
dimensional lattice L satisfies λ1(L∗) · µ(L) ≤ O(n). The only proof we are aware of for this tight bound
is the one of Banaszczyk [4] whose tools and techniques are the heart of the current paper. This might hint
that our approach to the embedding question is natural and that it has not been pushed to its limit yet.

A more ambiguous open question is to obtain tight bounds on c2(Rn/L) for every lattice L in terms of
geometrical parameters of L.

1.4 Outline

The paper is organized as follows. In Section 2 we gather all the definitions on embeddings, lattices, Gaus-
sian measures and Korkine-Zolotarev bases that we need in this paper . In Section 3 we prove properties
of Gaussian distributions on lattices and in Section 4 we prove properties of Korkine-Zolotarev bases. In
Section 5 we prove Theorems 1.4 and 1.3. We note that the lemmas proven in Section 4 are used in the proof
of Theorem 1.3 but not in the proof of Theorem 1.4. Then, in Section 6 we prove Theorem 1.5. Finally, in
Section 7 we discuss the performance of the embedding of Khot and Naor used in the proof of Theorem 1.2.

2 Preliminaries

2.1 General

For a real x, ⌈x⌋ stands for the integer that satisfies −0.5 < x − ⌈x⌋ ≤ 0.5. The ℓ2 norm of u ∈ Cn is
defined as ∥u∥ = (

∑n
i=1 |ui|2)1/2 where ui is the ith coordinate of u. The inner product of u, v ∈ Cn is

defined as ⟨u, v⟩ =
∑n

i=1 uivi. For a point u ∈ Cn and a set S ⊆ Cn, denote u + S = {u + x | x ∈ S}
and dist(u, S) = infx∈S ∥u− x∥. The open unit ball is defined as B = {w ∈ Rn | ∥w∥ < 1}. For a scalar
function f and a subset A of its domain, we use the notation f(A) =

∑
x∈A f(x).

We will need the following simple fact, in which we do not make any attempt to optimize the constants.

Fact 2.1. For any a ≥ 0 and 0 ≤ b < 1√
2
,

cosh(2πab)− 1 ≤ 230 · b2e
3π
4
a2 .

Proof: We separate the proof into two cases as follows. If πab ≤ 1 then use the fact that any α ∈ [−2, 2]

satisfies cosh(α) − 1 ≤ α2 and α ≤ eα to obtain cosh(2πab) − 1 ≤ 4π2 · b2ea2 . Otherwise, use the fact
that any α ≥ 0 satisfies cosh(α) ≤ eα and α2 ≤ eα and the assumption b ≤ 1√

2
to obtain

cosh(2πab)− 1 ≤ e2πab ≤ (πab)2 · e
√
2πa ≤ π2 · b2e(

√
2π+1)a ≤ 230 · b2e

3π
4
a2 ,

where the last inequality is easy to prove by taking the logarithm on both sides.
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2.2 Embeddings

For two metric spaces (X, distX) and (Y,distY ) and a function f : X → Y we define the Lipschitz constant
of f as

∥f∥Lip = sup
x ̸=y∈X

distY (f(x), f(y))

distX(x, y)
.

If f is injective we define its distortion as distortion(f) = ∥f∥Lip·∥f−1∥Lip, and otherwise distortion(f) =
∞. By cY (X) we denote the least distortion with which X can be embedded into Y , i.e.,

cY (X) = inf {distortion(f) | f : X → Y }.

We use cp(X) to denote cLp(X). Of special interest are embeddings into Hilbert spaces and in this case the
parameter c2(X) is called the Euclidean distortion of X .

2.3 Lattices

An n-dimensional lattice L ⊆ Rn is the set of all integer combinations of a set of linearly independent
vectors {b1, . . . , bm} ⊆ Rn, i.e., L = {

∑m
i=1 aibi | ∀i. ai ∈ Z}. The set {b1, . . . , bm} is called a basis of

L and m, the number of vectors in it, is the rank of L. Let B be the n by m matrix whose ih column is bi.
We identify the matrix and the basis that it represents and denote by L(B) the lattice that B generates. The
determinant of L is defined by det(L) =

√
det(BTB). It is not difficult to verify that det(L) is independent

of the choice of the basis. The dual lattice, denoted by L∗, is defined as the set of all vectors in Rn that have
integer inner product with all the lattice vectors of L, that is L∗ = {u ∈ Rn | ∀v ∈ L. ⟨u, v⟩ ∈ Z}, and
a self-dual lattice is one that satisfies L = L∗. The length of a shortest nonzero vector in L is denoted by
λ1(L) = min{∥u∥ | u ∈ L\{0}}. This definition is naturally extended to the successive minima λ1, . . . , λm

defined as follows:
λi(L) = inf{r > 0 | rank(span(L ∩ r · B)) ≥ i}.

It will be convenient to define also λ0(L) = 0. For a full-rank lattice L (that is, m = n) the covering radius
µ(L) is defined as the smallest r such that balls of radius r centered at all lattice points cover the entire space,
or equivalently µ(L) = max{dist(x,L) | x ∈ Rn}. It is well known that 1

2 · λn(L) ≤ µ(L) ≤
√
n
2 · λn(L)

(see, e.g., [11, Page 138]). In [4] Banaszczyk proves relations between parameters of lattices, such as λ1

and µ, and parameters of their dual. Such results are known as transference theorems. One of his results
which is known to be tight up to a multiplicative constant is the following.

Theorem 2.2. For any full-rank n-dimensional lattice L, 1
2 ≤ λ1(L∗) · µ(L) ≤ n

2 .

The space Rn/L is the quotient space defined by a lattice L. Let u, v ∈ Rn/L be two points. By abuse
of notation we sometimes identify between points in Rn/L and their representatives in Rn. For example,
distRn/L(u, v) is defined as dist(u,L+ v), i.e., the distance between representatives of u and v modulo the
lattice. A function f : Rn → C is L-periodic if f(x) = f(x + y) for all x ∈ Rn and y ∈ L. The Hilbert
space L2(Rn/L) is a space of scalar functions with domain Rn/L. We sometimes identify a function in
L2(Rn/L) with its corresponding L-periodic function with domain Rn. For f, g ∈ L2(Rn/L), the distance
between them is defined as

distL2(Rn/L)(f, g) =

(∫
Rn/L

|f(x)− g(x)|2dx

)1/2

.
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2.4 Gaussian Measures and the Smoothing Parameter

For n ∈ N and s > 0 let ρs : Rn → (0, 1] be the Gaussian function centered at the origin scaled by a factor
of s defined by

∀x ∈ Rn. ρs(x) = e−π∥x/s∥2 .

We omit the subscript when s = 1. We define the discrete Gaussian distribution with parameter s on a
lattice L by its probability function

∀x ∈ L. DL,s(x) =
ρs(x)

ρs(L)
.

Notice that the sum ρs(L) over all lattice vectors is finite, as follows from the fact that
∫
Rn ρs(x)dx = sn. It

can be shown that a vector sampled from DL,s has the zeros vector as expectation and has expected squared
norm close to s2n/2π if s is large enough. Micciancio and Regev [12] defined a lattice parameter that
measures how big s should be for the distribution DL,s to “behave like” a continuous Gaussian distribution
in Rn (and in particular to have expected squared norm close to s2n/2π). This parameter is called the
smoothing parameter and is defined as follows.

Definition 2.3. For a lattice L and a positive ε > 0 the smoothing parameter ηε(L) is defined as the smallest
s > 0 such that ρ1/s(L∗ \ {0}) ≤ ε.

A main property of the smoothing parameter is that, roughly speaking, the distribution of a uniformly
chosen random lattice point from L perturbed by a Gaussian with s = ηε(L) is ε/2-close to a uniform
distribution on the entire space. For more details on the smoothing parameter the reader is referred to [12].

We state below a lemma due to Banaszczyk [4] and a simple bound on the smoothing parameter that it
yields.

Lemma 2.4 ([4]). For any n ≥ 1, an n-dimensional lattice L and a vector u ∈ Rn,

ρ((L − u) \ 2
√
nB) ≤ 2−11n · ρ(L).

Lemma 2.5. For any n ≥ 1 and an n-dimensional lattice L, ηε(L) ≤ 2
√
n

λ1(L∗) where ε = 2−10n.

Proof: The proof is nearly identical to a proof of a similar lemma in [12]. For any n-dimensional lattice L,
Lemma 2.4 and the fact that ρ(L) = ρ(L \ 2

√
nB) + ρ(L ∩ 2

√
nB) imply that

ρ(L \ 2
√
nB) ≤ 2−11n

1− 2−11n
· ρ(L ∩ 2

√
nB) < 2−10n · ρ(L ∩ 2

√
nB).

Take s > 2
√
n

λ1(L∗) and observe that

ρ1/s(L∗ \ {0}) = ρ(sL∗ \ {0}) = ρ(sL∗ \ 2
√
nB) < 2−10n · ρ(sL∗ ∩ 2

√
nB) = 2−10n.

2.5 Korkine-Zolotarev Bases

The question of specifying a basis of a lattice with valuable properties is known as reduction theory. In
1873, Korkine and Zolotarev [9] defined and studied a notion of a reduced basis whose vectors are in some
sense close to orthogonal. These bases are known as Korkine-Zolotarev bases.
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Before defining Korkine-Zolotarev bases we need to define the Gram-Schmidt orthogonalization pro-
cess. For a sequence of vectors b1, . . . , bn define the corresponding Gram-Schmidt orthogonalized vectors
b̃1, . . . , b̃n by

b̃i = bi −
i−1∑
j=1

µi,j b̃j , µi,j =
⟨bi, b̃j⟩
⟨b̃j , b̃j⟩

.

In words, b̃i is the component of bi orthogonal to b1, . . . , bi−1. A Korkine-Zolotarev basis is defined as
follows.

Definition 2.6. Let B be a basis of an n-dimensional lattice L and let B̃ be the corresponding Gram-Schmidt
orthogonalized basis. For 1 ≤ i ≤ n define the projection function π

(B)
i (x) =

∑n
j=i ⟨x, b̃j⟩ · b̃j/∥b̃j∥2 that

maps x to its projection on span(b̃i, . . . , b̃n). A basis B is a Korkine-Zolotarev basis if for all 1 ≤ i ≤ n,

• b̃i is a shortest nonzero vector in π
(B)
i (L) = {π(B)

i (u) | u ∈ L},

• and for all j < i, the Gram-Schmidt coefficients µi,j of B satisfy |µi,j | ≤ 1
2 .

Lagarias, Lenstra and Schnorr [10] proved that the norms of the vectors in a Korkine-Zolotarev basis are
not far from the successive minima of the lattice, as stated below.

Theorem 2.7 ([10]). If B is a Korkine-Zolotarev basis of an n-dimensional lattice L, then for all 1 ≤ i ≤ n,

4

i+ 3
· λi(L)2 ≤ ∥bi∥2 ≤

i+ 3

4
· λi(L)2.

3 Properties of Gaussian Distributions

For an n-dimensional lattice L ⊆ Rn and a positive number s > 0 we define the function hL,s : Rn → [0, 1)

by

∀u ∈ Rn. hL,s(u) = 1− ρs(L − u)

ρs(L)
.

It can be shown that the function hL,s is nonnegative.1 Notice that if u ∈ L then hL,s(u) = 0.
In this section we gather and prove several results on hL,s that, roughly speaking, show that for certain

choices of s, hL,s(u) is closely related to the distance of u from L. The following lemma provides upper and
lower bounds on hL,s(u). Its first item is due to [4] and we include its proof for completeness. We remark
that the lemma can also be proven using Fourier transform.

Lemma 3.1. For any n ≥ 1, an n-dimensional lattice L, a vector u ∈ Rn and s > 0,

1. hL,s(u) ≤ π
s2

· dist(u,L)2.

2. If 0 < ε ≤ 1
1000 , s ≤ 1

2ηε(L∗) and dist(u,L) ≤ s√
2

then hL,s(u) ≥ c
s2

· dist(u,L)2, where c is an
absolute constant.

1For example, this follows from Proposition 5.1.
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Proof: Assume without loss of generality that dist(u,L) = ∥u∥ and observe that

hL,s(u) = 1− 1

ρs(L)
·
∑
x∈L

e−
π∥x−u∥2

s2 = 1− 1

2ρs(L)
·
∑
x∈L

(
e−

π∥x−u∥2

s2 + e−
π∥x+u∥2

s2

)

= 1− e−
π∥u∥2

s2

ρs(L)
·
∑
x∈L

(
e−

π∥x∥2

s2 · cosh
(
2π⟨x, u⟩

s2

))

= 1− e−
π∥u∥2

s2 − e−
π∥u∥2

s2

ρs(L)
·
∑

x∈L\{0}

(
e−

π∥x∥2

s2 ·
(
cosh

(
2π⟨x, u⟩

s2

)
− 1

))
.

For Item 1, use the fact that for all α ∈ R, cosh(α) ≥ 1 and 1− e−α ≤ α to get that

hL,s(u) ≤ 1− e−
π∥u∥2

s2 ≤ π∥u∥2

s2
=

π

s2
· dist(u,L)2.

For Item 2, use the Cauchy-Schwarz inequality and Fact 2.1 to get that any x ∈ L \ {0} satisfies

cosh

(
2π⟨x, u⟩

s2

)
− 1 ≤ cosh

(
2π∥x∥ · ∥u∥

s2

)
− 1 ≤ 230 · ∥u∥

2

s2
· e

3π∥x∥2

4s2 .

This implies that

hL,s(u) ≥ 1− e−
π∥u∥2

s2 − 230∥u∥2

s2
·
∑

x∈L\{0}

(
e−

π∥x∥2

s2 · e
3π∥x∥2

4s2

)

= 1− e−
π∥u∥2

s2 − 230∥u∥2

s2
· ρ2s(L \ {0}) ≥ ∥u∥2

s2

(π
4
− 230ε

)
,

where the last inequality follows from the inequality 1 − e−α ≥ α
4 that holds for any α ≤ 2 and the

assumptions ∥u∥ ≤ s√
2

and ηε(L∗) ≤ 1
2s . This completes the proof by our assumption on ε.

We turn to deal with lower bounds on hL,s(u) for vectors u that are far from the lattice.

Lemma 3.2. For any n ≥ 1, an n-dimensional lattice L, s > 0 and u ∈ Rn,

1. If dist(u,L) > 2s ·
√
n then hL,s(u) ≥ 1− 2−11n.

2. If λ1(L) ≥ 4s
√
n then hL,s(u) ≥ 1− e−π dist(u,L)2/s2 − 2−11n.

Proof: First, apply Lemma 2.4 to 1
s · L to get that

hL,s(u) ≥ 1− 2−11n − ρs((L − u) ∩ 2s ·
√
nB)

ρs(L)
.

If dist(u,L) > 2s ·
√
n then the intersection (L − u) ∩ (2s ·

√
nB) is empty and we are done. For Item 2,

notice that there is at most one point of L − u inside the (open) ball of radius 2s ·
√
n.

4 Properties of Korkine-Zolotarev Bases

In this section we prove two simple lemmas on Korkine-Zolotarev bases (see Definition 2.6). For an n-
dimensional lattice L and a Korkine-Zolotarev basis B that generates it, let Li = π

(B)
i (L) be the projection

of L on span(b̃i, . . . , b̃n). Notice that Li is a lattice for every 1 ≤ i ≤ n. Intuitively speaking, since the
vectors of B are close to being orthogonal, we expect a shortest nonzero vector in Li to have length similar
to λi(L). This is stated formally in the following lemma. Notice that the lower bound is meaningful only
when there is a gap between λi−1(L) and λi(L).
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Lemma 4.1. Let B be a Korkine-Zolotarev basis of an n-dimensional lattice L and denote Li = π
(B)
i (L).

Then for all 1 ≤ i ≤ n,

4

i+ 3
· λi(L)2 −

i− 1

4
· λi−1(L)2 ≤ λ1(Li)

2 ≤ λi(L)2.

Proof: For an n-dimensional lattice L and i ≤ n there exist i linearly independent vectors in L of length at
most λi(L). At least one of these vectors does not belong to span(b1, . . . , bi−1). Hence, a nonzero vector
of length at most λi(L) belongs to Li, so λ1(Li) ≤ λi(L). For the left inequality, use Theorem 2.7 and the
right inequality that we just proved to observe that

λ1(Li)
2 = ∥b̃i∥2 = ∥bi∥2 −

i−1∑
j=1

µ2
i,j∥b̃j∥2 ≥ 4

i+ 3
· λi(L)2 −

1

4
·
i−1∑
j=1

λj(L)2

≥ 4

i+ 3
· λi(L)2 −

i− 1

4
· λi−1(L)2.

The next lemma says that if the distance of a vector u ∈ Rn from L is somewhat higher than λi−1(L),
then it is close to the distance between Li and the projected vector πi(u).

Lemma 4.2. Let B be a Korkine-Zolotarev basis of an n-dimensional lattice L and denote Li = π
(B)
i (L).

Then for any u ∈ Rn and 1 ≤ i ≤ n,

dist(u,L)2 − i− 1

4
· λi−1(L)2 ≤ dist(πi(u),Li)

2 ≤ dist(u,L)2.

Proof: For the right inequality, let w ∈ L be a lattice vector that satisfies dist(u,L) = dist(u,w). Since πi
is an orthogonal projection

dist(u,L) = dist(u,w) ≥ dist(πi(u), πi(w)) ≥ dist(πi(u),Li).

For the left inequality, let v ∈ L be a lattice vector that satisfies dist(πi(u),Li) = dist(πi(u), πi(v)) and
|⟨u− v − πi(u− v), b̃j⟩| ≤ 1

2∥b̃j∥
2 for every 1 ≤ j ≤ i− 1. Such a vector can be easily constructed from

u− v by subtracting appropriate integer multiples of b̃i−1, . . . , b̃1. We obtain that

dist(u,L)2 ≤ dist(u, v)2 = dist(πi(u), πi(v))
2 + dist(u− πi(u), v − πi(v))

2

≤ dist(πi(u),Li)
2 +

1

4
·
i−1∑
j=1

∥b̃j∥2 ≤ dist(πi(u),Li)
2 +

i− 1

4
· λi−1(L)2,

as desired.

5 The Embedding

In this section we prove the main results of the paper. We define an embedding from a torus Rn/L into the
Hilbert space L2(Rn/L) and relate the distortion that it achieves to the function hL,s defined in Section 3.

For an n-dimensional lattice L and s > 0 we define the embedding HL,s : Rn/L → L2(Rn/L) that
maps any vector u ∈ Rn/L to the function that maps any x ∈ Rn to

s√
2ρs(L)

·
(
2

s

)n/2

· ρ s√
2
(L+ x− u).

9



In words, HL,s(u) is the function that maps any x ∈ Rn to the mass of the Gaussian function centered at u
with parameter s√

2
on all the shifts of x by lattice vectors (up to some normalization factor).

The following proposition relates the distance between two embedded points and the function hL,s from
Section 3. This enables us to use the lemmas from Section 3 to bound the distortion achieved by our
embedding.

Proposition 5.1. For any n ≥ 1, an n-dimensional lattice L, a real s > 0 and u, v ∈ Rn/L,

distL2(Rn/L)(HL,s(u), HL,s(v))
2 = s2 · hL,s(u− v).

Proof: We start by calculating the following integral for general u, v ∈ Rn.∫
Rn/L

ρ s√
2
(L+ z − u)ρ s√

2
(L+ z − v)dz =

∑
x∈L

∫
Rn/L

ρ s√
2
(x+ z − u)ρ s√

2
(L+ x+ z − v)dz

=

∫
Rn

ρ s√
2
(w)ρ s√

2
(L+ w + u− v)dw

=
∑
y∈L

∫
Rn

ρs(2w + y + u− v)ρs(y + u− v)dw

=
(s
2

)n
· ρs(L+ v − u),

where for the first equality notice that L = x + L for every x ∈ L and for the third use the parallelogram
law. Now we prove the lemma using the integral from above.

distL2(Rn/L)(HL,s(u),HL,s(v))
2 =

s2

2ρs(L)
·
(
2

s

)n

·
∫
Rn/L

(ρ s√
2
(L+ z − u)− ρ s√

2
(L+ z − v))2dz

=
s2

2ρs(L)
·
(
2

s

)n

·
(
2 ·
(s
2

)n
· ρs(L)− 2 ·

(s
2

)n
· ρs(L+ v − u)

)
= s2 ·

(
1− ρs(L+ v − u)

ρs(L)

)
= s2 · hL,s(u− v).

5.1 Upper Bounds in Terms of Lattice Parameters

In this section we prove an upper bound on c2(Rn/L) in terms of λ1(L) and µ(L). We start with the
following theorem for didactical reasons and then prove its strengthening Theorem 1.4.

Theorem 5.2. For any n ≥ 1 and an n-dimensional lattice L, c2(Rn/L) = O
(

µ(L)
λ1(L) ·

√
n
)

.

Proof: Let L be an n-dimensional lattice, consider the embedding HL,s for s = λ1(L)
4
√
n

, and fix distinct
u, v ∈ Rn/L. By Proposition 5.1 our goal is to bound

A :=
distL2(Rn/L)(HL,s(u),HL,s(v))

2

distRn/L(u, v)2
=

s2 · hL,s(u− v)

distRn/L(u, v)2

from above and from below. For the upper bound use Item 1 of Lemma 3.1 to obtain A ≤ s2 · π
s2

= π. For
the lower bound consider the following two cases. If distRn/L(u, v) ≤ s√

2
then by Item 2 of Lemma 3.1

applied to u − v we get A ≥ s2 · c
s2

= c, using Lemma 2.5 that yields 2ηε(L∗) ≤ 4
√
n

λ1(L) = 1
s for

ε = 2−10n ≤ 1
1000 . Otherwise, if distRn/L(u, v) >

s√
2
, by Item 2 of Lemma 3.2 applied to u − v we have

A ≥ s2 · 1−e−π/2−2−11n

µ(L)2 , using the fact that λ1(L) = 4s ·
√
n. Hence, our embedding achieves distortion

O
(
µ(L)
s

)
= O

(
µ(L)
λ1(L) ·

√
n
)

.
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For the proof of Theorem 1.4 we extend the embedding HL,s as follows. For an n-dimensional lattice
L, s > 0 and k ≥ 1, we define the embedding H

(k)
L,s : R

n/L → L2(Rn/L)k by

H
(k)
L,s = (HL,s1 , HL,s2 , . . . , HL,sk),

where si = 2i−1 · s.

Theorem 1.4. For any n ≥ 1 and an n-dimensional lattice L, c2(Rn/L) = O
(√

n · log
(
4µ(L)
λ1(L)

))
.

Proof: Let L be an n-dimensional lattice and consider the embedding H
(k)
L,s for s = λ1(L)

4
√
n

and k =⌈
log
(
4µ(L)
λ1(L)

)⌉
. This embedding maps any point u ∈ Rn/L to a vector of Gaussian functions with various

radii in the interval between the length of a shortest nonzero vector in L and its covering radius. Intuitively,
in this way for every possible distance between two points in Rn/L we have a Gaussian function sensitive
to it.

Fix distinct u, v ∈ Rn/L and use Proposition 5.1 to observe that

distL2(Rn/L)k(H
(k)
L,s(u), H

(k)
L,s(v))

2

distRn/L(u, v)2
=

k∑
i=1

distL2(Rn/L)(HL,si(u),HL,si(v))
2

distRn/L(u, v)2
=

k∑
i=1

Ai(u, v),

where si = 2i−1 · s and Ai(u, v) =
s2i ·hL,si

(u−v)

distRn/L(u,v)2
for 1 ≤ i ≤ k. We will show that

Ω

(
1

n

)
≤

k∑
i=1

Ai(u, v) ≤ O(k), (1)

which implies that our embedding has distortion O(
√
nk), as required.

By Item 1 of Lemma 3.1 we have Ai(u, v) ≤ s2i · π
s2i

= π for every 1 ≤ i ≤ k, which proves the
upper bound in (1). In order to prove the lower bound in (1) we now show that there exists an i such that
Ai(u, v) ≥ Ω( 1n). Consider the following three cases:

• Case 1: distRn/L(u, v) ≤ 1
4
√
2n

· λ1(L).

Notice that by Lemma 2.5 we have 2ηε(L∗) ≤ 4
√
n

λ1(L) = 1
s1

for ε = 2−10n ≤ 1
1000 . Hence, by Item 2

of Lemma 3.1, A1(u, v) ≥ s21 · c
s21

= c.

• Case 2: 1
4
√
2n

· λ1(L) < distRn/L(u, v) ≤ λ1(L).
Since λ1(L) = 4s1

√
n, by Item 2 of Lemma 3.2 we get hL,s1(u− v) ≥ 1− e−π/2− 2−11n and hence

A1(u, v) ≥ (1− e−π/2 − 2−11n) · s21
dist2Rn/L(u, v)

≥ 1− e−π/2 − 2−11n

16n
.

• Case 3: λ1(L) < distRn/L(u, v) ≤ µ(L).
Let 1 ≤ i ≤ k be the index that satisfies si <

distRn/L(u,v)

2
√
n

≤ 2 · si = si+1. This index exists due to
our choice of k. So distRn/L(u, v) = dist(u− v,L) > 2si ·

√
n. Hence, by Item 1 of Lemma 3.2, we

have hL,si(u− v) ≥ 1− 2−11n and we get that

Ai(u, v) ≥ (1− 2−11n) · s2i
dist2Rn/L(u, v)

≥ 1− 2−11n

16n
.
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In the following two corollaries we observe that our bounds are nearly tight for certain families of
lattices. The first follows immediately by combining Theorems 1.5 and 5.2.

Corollary 5.3. Let L be an n-dimensional lattice such that λ1(L), µ(L) are equal up to a multiplicative
constant and λ1(L∗) · µ(L) ≥ Ω(n). Then, c2(Rn/L) = Θ(

√
n).

Corollary 5.4. Let L be an n-dimensional lattice such that λ1(L∗) and µ(L∗) are equal up to a multiplica-
tive constant. Then, Ω(

√
n) ≤ c2(Rn/L) ≤ O(

√
n log n).

Proof: By Theorem 1.1, c2(Rn/L) ≥ Ω(
√
n). For the upper bound notice that Theorem 2.2 implies that

µ(L)
λ1(L)

≤ n · µ(L∗)

λ1(L∗)
≤ O(n),

and apply Theorem 1.4 to get c2(Rn/L) ≤ O(
√
n log n).

5.2 General Upper Bound

In this section we prove an upper bound on c2(Rn/L) that depends only on n and is almost linear. Before
presenting the proof let us start with some intuition. Notice that using the tools presented in Section 3 we
have an embedding that works well for distances at most λ1(L) (Item 2 of Lemma 3.1) and an embedding
that works for specific distances (Lemma 3.2). Consider a Korkine-Zolotarev basis and the projections that
it defines: the lattice Li = πi(L) is the lattice L projected to span(b̃i, . . . , b̃n). We think of Li as a full-rank
lattice inside an (n − i + 1)-dimensional space. Our embedding consists of n Gaussian functions where
the ith function corresponds to the lattice Li. Due to the use of a Korkine-Zolotarev basis using Item 2 of
Lemma 3.1 we can show that the ith Gaussian function handles distances that are both somewhat larger than
λi−1(L) and somewhat smaller than λi(L). In order to treat distances around the λi(L)’s we add additional
O(log n) Gaussian functions for every i and use Lemma 3.2 to prove correctness.

We restate and prove Theorem 1.3.

Theorem 1.3. For any n ≥ 1 and an n-dimensional lattice L, c2(Rn/L) = O(n ·
√
log n).

Proof: Let L be an n-dimensional lattice generated by a Korkine-Zolotarev basis B. For 1 ≤ i ≤ n

let πi = π
(B)
i be the corresponding orthogonal projection function that maps vectors to the orthogonal

complement of span(b1, . . . , bi−1). Denote Li = πi(L), ni = n− i+1, si =
λi(L)
4n , k = ⌈12 · (5+ 3 log n)⌉

and ri,j = 2j−1 · λi(L)
8n

√
2n

for 1 ≤ j ≤ k. Consider the embedding HL that maps u ∈ Rn/L to the vector of
n+ nk = O(n log n) functions

(HL1,s1(π1(u)), HL2,s2(π2(u)), . . . , HLn,sn(πn(u)), H
(k)
L,r1,1(u), H

(k)
L,r2,1(u), . . . , H

(k)
L,rn,1

(u)).

This is an element in the space L2 = L2(Rn1/L1)⊕ · · · ⊕ L2(Rnn/Ln)⊕ L2(Rn/L)nk.
Fix distinct u, v ∈ Rn/L. By Proposition 5.1,

distL2(HL(u),HL(v))
2

distRn/L(u, v)2
=

n∑
i=1

Ai(u, v) +
∑

1≤i≤n,1≤j≤k

Bi,j(u, v),

where

Ai(u, v) =
s2i · hLi,si(πi(u)− πi(v))

distRn/L(u, v)2
,

Bi,j(u, v) =
r2i,j · hL,ri,j (u− v)

distRn/L(u, v)2
.
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We will show that

Ω

(
1

n

)
≤

n∑
i=1

Ai(u, v) +
∑

1≤i≤n,1≤j≤k

Bi,j(u, v) ≤ O(n log n), (2)

which implies that our embedding has distortion O(n ·
√
log n), as required.

By Item 1 of Lemma 3.1, for every 1 ≤ i ≤ n and 1 ≤ j ≤ k we have

Ai(u, v) ≤
distRni/Li

(πi(u), πi(v))
2

distRn/L(u, v)2
· s2i ·

π

s2i
≤ π,

Bi,j(u, v) ≤ r2i,j ·
π

r2i,j
= π,

where for the bound on Ai(u, v) we use the upper bound from Lemma 4.2 applied to u− v. This yields the
upper bound in (2). In order to prove the lower bound in (2) we now show that there exists an i such that
Ai(u, v) ≥ Ω( 1n) or there exist i, j such that Bi,j(u, v) ≥ Ω( 1n). Since distRn/L(u, v) = dist(u− v,L) ≤
µ(L) ≤

√
n
2 · λn(L) the vectors u and v correspond to one of the following two cases:

• Case 1: There exists an i such that
√
n
2 · λi−1(L) < distRn/L(u, v) ≤ 1

4
√
2·n · λi(L).

Think of Li as a full-rank ni-dimensional lattice, and use Lemma 2.5 to obtain for εi = 2−10ni ≤ 1
1000

that

ηεi(L∗
i )

2 ≤ 4ni

λ1(Li)2
≤ 4ni

4
i+3 · λi(L)2 − i−1

4 · λi−1(L)2
≤ 4n2

λi(L)2
,

where the second inequality follows from Lemma 4.1 and the third from a straightforward calculation.
This yields that 2 · ηεi(L∗

i ) ≤ 4n
λi(L) =

1
si

, so we get that

Ai(u, v) ≥ s2i ·
distRni/Li

(πi(u), πi(v))
2

distRn/L(u, v)2
· c

s2i
≥ c ·

(
1− i− 1

4
· λi−1(L)2

distRn/L(u, v)2

)
≥ c

n
,

where the first inequality follows from Item 2 of Lemma 3.1, the second follows from Lemma 4.2
applied to u− v, and the third from the assumption that

√
n
2 · λi−1(L) < distRn/L(u, v).

• Case 2: There exists an i such that 1
4
√
2·n · λi(L) < distRn/L(u, v) ≤

√
n
2 · λi(L).

Let 1 ≤ j ≤ k be the index that satisfies ri,j <
distRn/L(u,v)

2
√
n

≤ 2 · ri,j = ri,j+1. This index exists due
to our choice of k. So distRn/L(u, v) = dist(u−v,L) > 2ri,j ·

√
n. Hence, by Item 1 of Lemma 3.2,

we have hL,ri,j (u− v) ≥ 1− 2−11n and we get that

Bi,j(u, v) ≥ (1− 2−11n) ·
r2i,j

dist2Rn/L(u, v)
≥ 1− 2−11n

16n
.

6 Lower Bound

In this section we slightly improve the lower bound on the Euclidean distortion of a torus Rn/L in terms
of lattice parameters of L. The following claim lower bounds the expected squared distance between two
uniformly chosen points in Rn/L. Note that all the integrals below are with respect to the normalized
Riemannian volume measure on the torus.
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Claim 6.1. For any n ≥ 1 and an n-dimensional lattice L,∫
Rn/L×Rn/L

distRn/L(x, y)
2dxdy ≥ µ(L)2

8
.

Proof: It is known (see e.g., [7]) that for any fixed x ∈ Rn/L, the probability that a uniformly chosen
y ∈ Rn/L satisfies distRn/L(x, y) ≥ µ(L)

2 is at least 1
2 . To see this, let u ∈ Rn/L be a point such that

distRn/L(u, 0) = µ(L), and observe that for any x, y ∈ Rn/L at least one of y and y + u is µ(L)
2 -far from

x. This gives us a bound of 1
2 ·
(
µ(L)
2

)2
on the integral above, as required.

Note that the bound in the claim is tight up to a multiplicative constant since for all x, y ∈ Rn/L, distRn/L(x, y)

is bounded from above by µ(L).
Now we restate and prove Theorem 1.5. The proof is identical to that in [8] except for the use of

Claim 6.1, and is included for completeness.

Theorem 1.5. For any n ≥ 1 and an n-dimensional lattice L, c2(Rn/L) ≥ λ1(L∗)·µ(L)
4
√
n

.

Proof: Let f : Rn/L → L2 be an embedding of Rn/L into a Hilbert space. This implies that f is
differentiable almost everywhere (see [5]). By Parseval’s Theorem we get

∥f∥2Lip ≥ 1

n

n∑
j=1

∫
Rn/L

∥∥∥∥ ∂f

∂xj
(x)

∥∥∥∥2
L2

dx =
1

n

∑
x∈L∗

∥f̂(x)∥2L2
· ∥x∥2 ≥ λ1(L∗)2

n
·
∑

x∈L∗\{0}

∥f̂(x)∥2L2
.

Use Parseval’s Theorem again to observe that∑
x∈L∗\{0}

∥f̂(x)∥2L2
=

∫
Rn/L

∥f(x)∥2L2
dx− ∥f̂(0)∥2L2

=

∫
Rn/L

∥f(x)∥2L2
dx−

∫
Rn/L×Rn/L

⟨f(x), f(y)⟩L2dxdy

=
1

2
·
∫
Rn/L×Rn/L

∥f(x)− f(y)∥2L2
dxdy.

By Claim 6.1,

∥f−1∥2Lip ≥

∫
Rn/L×Rn/L distRn/L(x, y)

2dxdy∫
Rn/L×Rn/L ∥f(x)− f(y)∥2L2

dxdy
≥ µ(L)2

8
∫
Rn/L×Rn/L ∥f(x)− f(y)∥2L2

dxdy
.

It follows that distortion(f)2 = ∥f∥2Lip · ∥f−1∥2Lip ≥ λ1(L∗)2·µ(L)2
16n , and we are done.

Remark 6.2. For any lattice L, µ(L) = Ω(
√
n · det(L)1/n), as follows from the fact that a Voronoı̈ cell

of L has volume det(L) and is contained in a ball with radius µ(L). This implies that for any lattice L,
µ(L) · µ(L∗) ≥ Ω(n), and hence Theorem 1.5 is a strengthening of Theorem 1.1.

Remark 6.3. It is not difficult to use the techniques of [8] and a variant of Claim 6.1 to derive the stronger
statement c1(Rn/L) = Ω

(
λ1(L∗)·µ(L)√

n

)
for any n-dimensional lattice L.
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7 On the Embedding of Khot and Naor

In this section we collect some observations regarding the exact performance achieved by the embedding
of Khot and Naor [8] from the proof of Theorem 1.2. Details follow. For a full-rank lattice L ⊆ Rn let
{b1, . . . , bn} be a Korkine-Zolotarev basis that generates L. The embedding from [8] maps every point
x =

∑n
i=1 xibi to the point

(∥b1∥ cos 2πx1, ∥b1∥ sin 2πx1, . . . , ∥bn∥ cos 2πxn, ∥bn∥ sin 2πxn) ∈ R2n.

Khot and Naor show that up to a multiplicative constant the squared distortion of this embedding is the
maximum of ∑n

i=1 |xi − ⌈xi⌋|2∥bi∥2

dist(x,L)2
(3)

taken over all vectors x =
∑n

i=1 xibi. They showed an upper bound of O(n3n/2) and we ask here if a
smaller upper bound can be shown.

Recently, Ajtai showed that for every large enough n there exists an n-dimensional lattice L and a
Korkine-Zolotarev basis {b1, . . . , bn} of L such that ∥b1∥2

∥b̃n∥2
≥ nΩ(logn) [2, Theorem 1.9, Definition 3.3]. For

x = 1
2 b̃n =

∑n
i=1 xibi, it follows that xn = 1

2 and therefore (3) is at least

∥bn∥2

4 dist(x,L)2
≥ ∥b1∥2

∥b̃n∥2
≥ nΩ(logn).

This shows that for these lattices the embedding of Khot and Naor has distortion at least nΩ(logn). It would
be interesting to see whether this is tight or not. It would also be interesting to see whether there are lattices
for which for any basis that generates it (not necessarily a Korkine-Zolotarev one) the embedding from
above has distortion at least, say, super-polynomial.

The maximum of (3) seems relevant to understanding the approximation factor achieved by the “round-
off” algorithm of Babai [3] for the Closest Vector Problem where a Korkine-Zolotarev basis is used. This
algorithm simply expresses the target vector as a linear combination of the vectors in the Korkine-Zolotarev
basis and rounds each coefficient to an integer closest to it. An improved upper bound on the maximum
of (3) can be useful for an algorithm for the search version of the Closest Vector Problem with Preprocessing
(see [6]).

References

[1] D. Aharonov and O. Regev. Lattice problems in NP intersect coNP. Journal of the ACM, 52(5):749–
765, 2005. Preliminary version in FOCS’04.

[2] M. Ajtai. Optimal lower bounds for the Korkine-Zolotareff parameters of a lattice and for Schnorr’s
algorithm for the shortest vector problem. Theory of Computing, 4(1):21–51, 2008.

[3] L. Babai. On Lovász lattice reduction and the nearest lattice point problem. Combinatorica, 6(1):1–13,
1986.

[4] W. Banaszczyk. New bounds in some transference theorems in the geometry of numbers. Mathema-
tische Annalen, 296(4):625–635, 1993.

15



[5] Y. Benyamini and J. Lindenstrauss. Geometric nonlinear functional analysis. Vol. 1, volume 48 of
American Mathematical Society Colloquium Publications. American Mathematical Society, Provi-
dence, RI, 2000.

[6] U. Feige and D. Micciancio. The inapproximability of lattice and coding problems with preprocessing.
J. Comput. System Sci., 69(1):45–67, 2004.

[7] V. Guruswami, D. Micciancio, and O. Regev. The complexity of the covering radius problem on
lattices and codes. Computational Complexity, 14(2):90–121, 2005. Preliminary version in CCC’04.

[8] S. Khot and A. Naor. Nonembeddability theorems via Fourier analysis. Mathematische Annalen,
334(4):821–852, 2006. Preliminary version in FOCS’05.

[9] A. Korkine and G. Zolotareff. Sur les formes quadratiques. Mathematische Annalen, 6:366–389, 1873.

[10] J. C. Lagarias, H. W. Lenstra, Jr., and C.-P. Schnorr. Korkin-Zolotarev bases and successive minima of
a lattice and its reciprocal lattice. Combinatorica, 10(4):333–348, 1990.

[11] D. Micciancio and S. Goldwasser. Complexity of Lattice Problems: A Cryptographic Perspective, vol-
ume 671 of The Kluwer International Series in Engineering and Computer Science. Kluwer Academic
Publishers, Boston, MA, 2002.

[12] D. Micciancio and O. Regev. Worst-case to average-case reductions based on Gaussian measures.
SIAM Journal on Computing, 37(1):267–302, 2007.

[13] D. Micciancio and P. Voulgaris. A deterministic single exponential time algorithm for most lattice
problems based on voronoi cell computations. In Proc. 42nd ACM Symposium on Theory of Computing
(STOC), pages 351–358, 2010.

[14] J. Milnor and D. Husemoller. Symmetric bilinear forms. Springer-Verlag, Berlin, 1973.

16


